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EFFECTS OF PURITY AND STRUCTURE ON RECRYSTALLIZATION, 

GRAIN GROW", DUCTILITY, "EIiSILl3, AND CREEP 

PROPERTIES OF ARC-MELTED TUNGSTEN 

by W i l l i a m  D. Klopp and Peter L. Raffo 

Lewis Research Center 

S W Y  

The proper t ies  of f i v e  l o t s  of arc-melted tungsten have been characterized 
by chemical analyses, r ec rys t a l l i za t ion  and grain growth behavior, low- 
temperature d u c t i l i t y ,  and high-temperature t e n s i l e  and creep studies. Puri ty  
appears t o  a f f e c t  the r ec rys t a l l i za t ion  and grain growth r a t e s ,  while s t ruc ture  
exe r t s  the predominant influence on high-temperature t e n s i l e  and creep proper- 
t i e s .  

The r ec rys t a l l i za t ion  and grain growth r a t e s  varied among the  f i v e  l o t s  
studied, with the purest  l o t s  exhibit ing higher overa l l  r a t e s  than the  l e s s  
pure l o t s .  

The low-temperature t e n s i l e  d u c t i l i t i e s  of s t ress-rel ieved mater ia ls  
showed the usual decrease i n  d u c t i l e - b r i t t l e  t r a n s i t i o n  temperature with in- 
creasing amounts of p r io r  work. Limited t ens i l e  and bend data on r ec rys t a l -  
l i zed  mater ia ls  showed no discernible  e f f ec t  of pur i ty ,  s t ructure ,  or annealing 
temperature on the  d u c t i l e - b r i t t l e  t r a n s i t i o n  temperature. 

The t e n s i l e  propert ies  of arc-melted tungsten a t  2500' t o  4140' F were 
s igni f icant ly  affected by s t ructure ,  the  fine-grained mater ia ls  being stronger 
than coarse-grained materials. A t  constant strain r a t e ,  the y ie ld  strength 
varied a s  the  -0.25 power of the average grain diameter and the ultimate ten- 
s i l e  s t rength varied a s  the -0.12 power' of the average g r a i n  diameter. Thus, 
decreasing the average grain diameter from 0 . 1 t o  0.005 centimeter increased 
the y ie ld  s t rength by 80 percent and the ultimate s t rength by 40 percent. 
parabolic strain-hardening coef f ic ien ts  f o r  recrys ta l l ized  mater ia ls  a l so  in- 
crease with decreasing grain size. 

The 

The creep behavior of arc-melted tungsten a t  3000' t o  4000' F a l s o  w a s  
affected by grain s ize ,  the fine-grained materials being stronger. A t  constant 
s t r e s s  the  creep r a t e  varied a s  the 0.43 power of the  average gra in  diame er. 
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INTRODUCTION 

A s  a po ten t i a l  high-temperature s t ruc tu ra l  material ,  tungsten has for sev- 
e r a l  years been of i n t e r e s t  t o  NASA. 
s tudies  on unalloyed arc-melted tungsten conducted a t  the  Lewis  Research Center 
as a portion of a la rger  study on both unalloyed and alloyed tungsten. 

This report  describes the  r e s u l t s  of 

The propert ies  of powder-metallurgy tungsten, which has been a commercial 
product for several  decades, have been w e l l  documented i n  the  l i t e r a t u r e ;  how- 
ever, l e s s  information i s  avai lable  on tungsten consolidated by melting pro- 
cesses. Several recent s tudies  have generated information on r ec rys t a l l i za t ion  
(ref. l), low-teaperatme d u c t i l i t y  ( r e f .  l), and high-temperature t e n s i l e  
strength ( re fs .  2 and 3) of arc-melted tungsten. Studies have a l so  been con- 
ducted on the  r ec rys t a l l i za t ion  (refs. 4 t o  6 )  and low-temperature d u c t i l i t y  
( re fs .  7 and 8 )  of s ingle-crystal  tungsten and on the  propert ies  of polycrys- 
t a l l i n e  electron-beam-melted tungsten ( re fs .  4, 9, and 10). None of these 
studies,  however, covered the  creep propert ies  of melted tungsten. Addition- 
a l ly ,  the e f f e c t s  of pu r i ty  and s t ructure  on recrys ta l l iza t ion ,  gra in  growth, 
and mechanical propert ies  have not been wel l  defined. 

The present study was conducted i n  order t o  provide more de ta i led  i n f o r -  
mation on pur i ty  and s t ruc tu ra l  e f f e c t s  on the  recrys ta l l iza t ion ,  gra in  growth, 
low-temperature duc t i l i t y ,  and high-temperature t e n s i l e  and creep behavior of 
arc-melted tungsten. This information should provide baseline data  f o r  t he  
development o f  arc-melted tungsten-base a l loys  and f o r  comparison with powder- 
metallurgy and electron-beam-melted tungsten materials.  

SYMBOLS 

A,A',B,c,k constant' 

a exponential s t r e s s  dependency 

b exponential grain s i z e  f ac to r  

C circumference of c i r c l e ,  48.3 cm 

e 

e 

engineering s t r a i n  

steaiiy creep rate, sec-1 

f gra in  shape f ac to r  

G boundary migration rate, cm/sec 

K parabolic grain growth rate, sq cm/sec 

L average grain diameter, em 

L O  i n i t i a l  average grain diameter, cm 

M magnification 
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rupture  t i m e -  creep rate exponent 

average number of grains  per un i t  volume, cm- 

average number of r ec rys t a l l i za t ion  nuclei per u n i t  volume, cm-3 

number of in te rcepts  

ac t iva t ion  energy f o r  creep, cal/g-mole 

ac t iva t ion  energy f o r  grain boundary migration, cal/g-mole 

gas constant, 1.987 cal/g-mole 

engineering stress, p s i  

temperature, OK 

time, sec 

rupture t i m e ,  sec 

ultimate t e n s i l e  strength,  p s i  

f r ac t ion  recrys ta l l ized  

y ie ld  strength,  p s i  

t r ans i en t  creep r a t e ,  sec-113 

t r u e  p l a s t i c  s t r a i n  

t r u e  stress, p s i  

s t r a i n  hardening coeff ic ient ,  p s i2  

3 

l.!xEmIMENTAL PROCEDURES 

Star t ing  Materials 

The s t a r t i n g  materials consisted of sintered unalloyed (undopea) 15-pound 
tungsten electrodes. Five electrodes on which the majority of the  s tudies  were 
conducted are  iden t i f i ed  as A t o  E. These are ranked according t o  the  analyses 
of the  subsequent fabr icated materia&, with A containing the  least impurities 
and E containing the  most impurities. 
diameter by 24 inches long (electrodes A, B, D, and E )  or 15/16 inch i n  diam- 
e t e r  by 35 inches long (electrode C )  and w e r e  approximately 85 percent dense. 
Two addi t ional  l o t s ,  designated F and G, were employed i n  l imited creep stud- 
ies. 

1 
8 

The electrodes measured 1- inches i n  

These were prepared and processed s imilar ly  t o  l o t s  A t o  E. 
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Melting 

(a) 
3425 
10 

--- 
--- 
38 3 

0 
4. l ~ l O - ~  

The f i v e  15-pound electrodes were consumably arc-melted i n  vacuum i n t o  an 
18-inch deep, 2.68-inch-diameter water-cooled copper mold by using d i r e c t  cur- 
ren t ,  s t ra ight  po la r i ty  (e lectrode negative) power. Melting cur ren ts  were 4200 
t o  4400 amperes a t  35 vol t s ,  giving average m e l t  r a t e s  of 2.20 t o  2.77 pounds 
per minute. The furnace w a s  equipped with two 36-inch-diameter o i l -d i f fus ion  
pumps ana w a s  evacuated t o  a chamber pressure of approximately 0.01 micron 
during melting. 
higher, as has been shown with molybdenum ( re f .  11). 

Actual pressures at t he  molten ingot tops were undoubtedly much 

(b) 
3450 

6 
--- 

92. 4x103 
38 5 

0 
4. O X ~ O - ~  

Primary Fabricat ion 

(b) 
3460 

6 
5.8 

98. 4x103 
45 3 
1.0 --- 

I n i t i a l  ingot breakdown w a s  accomplished by hot  extrusion, since the  l a rge  
grained ingots are not amenable t o  other types of fabr ica t ion  d i rec t ly .  
Ingot A was machined t o  1 . 7 5  inches i n  diameter by 4 inches long and impact ex- 

(b) 
3450 

6 
5.7 

88. 4x103 
376 

0 
3.8)<10-3 

truded, as indicated i n  t a b l e  I. Ingots B t o  E were machined t o  2.08 inches i n  

TBLE I. - EXTRUSION DATA FOR ARC-MELTED TUNGSTEN 
Billet identity 

I 

Extrusion press 
Preheat temperature, 9. 
Reduction ratio 
Extrusion speed, in. /min 
Extrusion constant, K, psic 
Hardness of extruded rod, VHNd 
Fraction not recrystallized 
Average grain diameter, L, em 

I D  I E  
(b) 
3400 

8 
5.4 

458 
0.6 

38.5~10 

--- 
“Impact extrusion press. 
bHydropre s s  . 
‘Extrusion constant, K = P/ln R, where 

‘lO-kg load. 

P is maximum pressure on billet in 
Psi and R is reduction ratio. 

1 
2 diameter by 5 t o  4 inches long and extruded a t  slower speeds i n  a 1000-ton hy- 

dropress. Extrusion constants varied from 68,500 p s i  for b i l l e t  C t o  98,400 
p s i  f o r  b i l l e t  D, as shown i n  table 1. A l l  f i v e  b i l l e t s  were completely ex- 
truded and suffered very l i t t l e  surface tearing. 

Secondary Fabricat ion 

After sectioning t o  obtain metallographic samples, por t ions  of each ex- 
t ru s ion  were w a r m  swaged t o  0.36 inch i n  diameter t o  provide material f o r  ten- 
s i le  specimens o r  t o  various s izes  as s m a l l  as 0.18 inch i n  diameter t o  provide 
material for r ec rys t a l l i za t ion  and gra in  growth studies.  Additionally, por- 
t i o n s  of extrusions B and D were w a r m  fabr ica ted  by s t r a i g h t  and cross  r o l l i n g  
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Arc melt 2.5-in.- 
diam. ingot 

I 
W h i n e  to  2-in. - 
diam. bil let 

I 
Impact extrude at 3425' F to 
0.55-in. rod 

Warm swage t o  
0.43-in. rod 

I 

0.33-ia., 0.26-in., Ducti le-bri t t le 
and 0.18-in. rods 

(a) Lot A. 

Figure 1. - Fabrication and evaluation flow diagrams. 

t o  0. G3- t o  0.05-inch-thick 
sheet, a s  indicated i n  the 
f l o w  sheets for l o t s  A t o  E 
shown i n  f igure  1. A l l  
swaging and r o l l i n g  w a s  i n i -  
t i a t e d  a t  2500' F and com- 
pleted a t  2100° F, with the  
exception of material swaged 
from l o t  A f o r  recrys ta l -  
l i z a t i o n  studies. This ma- 
t e r ia l  w a s  swaged e n t i r e l y  
a t  2150° F t o  maximize cold 
working. 

Chemical Analyses 

Average chemical anal- 
yses of machined specimens 
of t he  0.36-inch-diameter 

rod swaged from each of t h e  f i v e  extrusions are given i n  table 11. 
analyses of these fabricated rods and of four s t a r t i n g  electrodes axe given i n  
the  appendix. These analyses show that a l l  f i ve  l o t s  contained between 15 and 
23  p a r t s  per mil l ion t o t a l  i n t e r s t i t i a l s ,  with the  major var ia t ion  being the 
threefold difference i n  oxygen content between l o t s  B and C. I n  contrast ,  t he  
t o t a l  detectable  metal l ic  impurity contents varied from 25 t o  88 p a r t s  per mil- 
l ion,  w i t h  l o t  E containing approximately 10 t i m e s  as much aluminum and i ron  as 
l o t  A. The amounts of copper, nickel, and sil icon, although lower than those 
of aluminum and iron, were a l so  highest  i n  l o t  E. 

Original 

Machine to 2-in. - 
diam. billet 

Extrude at 3450° F 
to 0.875-in. rod 

I I 
Warm swage t o  
0.20-in. rod 

I 

I 
Recrystallization 
studies 

Roll to 0.025-in. 
I 

Roll t o  0.050-in. 
sheet 

Anneal  at lsooo 
to  4mo0 F 

I 

Bend t rans i t ion I test 
I I 

(b) Ld B. 

Figure 1. - Continued. Fabrication and evaluation flow diagrams. 
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I Arc mel t  2.5-in. - 
diam. ingot 

Swage t o  
0.33-in. rod 

Machine to 2-in. - 
diam. bil let 

Roll to  0.050- 
in. sheet 

to 0.625-in. rod ri E*rudeat34000F I 

Anneal at 1800° -- Anneal at 3600' 

Tensile test - Creep test 

to  2900' F t o  3800° F - 
I I 

I I 

Swage to 0.33-in. rod 
I 1 

I 
Anneal at 2200° 
to  4200' F 

I\ I 

Bend test 

r Tensile test 

(c) Lot c. 
Figure 1. -Continued, Fabrication and evaluation flow diagrams. 

It i s  believed t h a t  these 
very s m a l l  pu r i ty  differences 
r e f l e c t  both s t a r t i ng  mater ia l  
pu r i ty  and consolidation pro- 
cedures and, fur ther ,  t h a t  they 
a f f e c t  the  r ec rys t a l l i za t ion  
and grain growth character is-  
t i c s  of t he  various l o t s ,  as 
described i n  the  sect ions 
Recrystal l izat ion Behavior and 
Grain Growth Behavior. 

Recrystal l izat ion and Grain 

Growth Studies 

Recrystal l izat ion s tudies  
were conducted on rod and/or 
sheet f rom each of  the  f i v e  
lots under study. Rod samples 

approximately 3/8 inch long and sheet samples about 1/4 inch wide by 3/8 inch 
long were annealed f o r  times ranging from 8 minutes t o  20 hours a t  temperatures 
ranging from 2550' t o  3000' F. 
l e s s  were conducted i n  an indgction-heated hydrogen-atmosphere furnace, while 
t he  longer treatments at 2550 F were conducted i n  a resistance-heated vacuum 
furnace. Temperatures were measured with a tungsten - tungsten-26 percent 
rhenium thermocouple (hydrogen furnace) or a platinum - platinum-10 percent 
rhodium thermocouple (vacuum furnace) and are estimated accurate t o  +15O F. 

Annealing treatments o f  4-hours durat ion or 

Machine to  2-in. - 

Extrude at 3460' F 

I I 

Recrystallization 

(d) Lot D. 

I studies I I %$re!rwrth 1 
Figure 1. - Continued. Fabrication and evaluation flow diagrams. 
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Anneal at 

Tensile 

Anneal at Recrystallization 
41000 F studies 

Arc melt 2.5-in. - 
diam. ingot 

Machine to 2-in. - 
diam. billet 

Grain growth 
studies 

I 1 
I 

Extrude at WSO0 F 
into 0.87%. rod 

(el Lot E. 

Figure 1. - Concluded. Fabrication and evaluation flav diagrams. 

TABLE 11- - ANALYSES OF FABRICATED ARC-MELTED TUNGSTEN RODS 

Element Lot 

I Impurity, 
PPma 

Oxygen 
Nitrogen 
Carbon 
Hydrogen 
Aluminum 
chromium 
Copper 
I r o n  
Molybdenum 
Nickel 
S i l i c o n  
Sodium 

Tota l  de tec tab le  meta l l ics  

3.0 
13 .O 

6 .O 
a . 0  
1.5 

u .O 
1.1 
4 -0 
10.0 
1.2 
7.5 

45.0 

25.3 

8.0 
G.0 

34.1 

6.0 5.0 3.0 
8.0 9.0 12.0 
9.0 6.0 5.0 
c1.0 u.0 u . 0  
8.0 5.0 15.0 

G . 0  G . 0  4.0 
.7 .7 2.6 

12.0 16.0 38.0 
10.0 12.0 11.0 
1.2 1.1 5.6 
7.5 7.0 12.0 

G . 0  16.0 G . 0  

39.4 57.8 88.2 

aAnalyses conducted as follows: 
Oxygen and hydrogen - vacuum fusion 
Nitrogen - Kjeldahl 
Carbon - combustion 
Metal l ics  - average of emission spectrography 

and mass spectrography. 
by both emission and m a s s  spectrography a r e  
reported.  
appendix. 

Only elements detected 

Original  analyses are given i n  

The heat- t reated samples 
were sectioned longi tuai-  
nal ly ,  mounted, and ex- 
amined metallographic a l ly .  
The f r ac t ion  recrys ta l -  
l i z e d  was averaged from 
estimates by two observers 
over a t  l e a s t  10  areas  on 
each sample. The average 
grain diameter was deter-  
mined f o r  specimens re- 
c rys t a l l i zed  90 percent or 
more by counting the  num- 
ber  of boundary in t e rcep t s  
with a c i r c l e  48.3 cent i -  
meters i n  circumference on 
a project ion screen. The 
following r e l a t i o n  was 
employed i n  calculat ing 
the  grain diameter: 

L = -  C 
Mn 

where 

L average grain diam- 
e t e r ,  cm 

C circumference of c i r c l e ,  
48.3 cm 

M magnification 

n number of i n t e rcep t s  

A t  l e a s t  f i v e  counts of 
about 40 in te rcepts  each 
were averaged f o r  each spec- 
imen. The number of gra ins  
per cubic centimeter i s  cal-  
culated (ref. 12) as 

- 3 
N = (i) 

where 
- 
N average number of grains  

per cubic centimeter 

L average grain diameter, 
cm 

7 



Grain growth studies were a l s o  conducted on 3/8-inch-long rod samples 
and/or 1/4-inch-wide by 3/8-inch-long sheet samples f5om each of the five lots. 
These were annealed at temperatures ranging from 3300 to 4200' F (for times 
ranging f rom 1 to 14 hr). Annealing treatments were conducted in a tungsten- 
element vacuum furnace. Temperatures were measured by optical pyrometry and 
are believed accurate to +25O F. 
taken as that which was characteristic of the same material immediately after 
recrystallization; For preannealed samples, the initial sizes were determined 
by the intercept-count method previously described. Final grain sizes were 
determined similarly after annealing. 

The initial grain size for worked samples was 

Bend Transition Studies 

Bend specimens, 3/8 by 3/4 inch, were cut from a 0.050-inch-thick sheet 
rolled from extruded bars of lots B and D. The specimens were electropolished 
f o r  10 minutes at 12 volts direct current. in a 2-percent sodium hydroxide 
aqueous solution to produce smooth, scratch-free specimen surfaces. Bend tests 
were conducted in the apparatus pictured in figure 2. The specimens were 
mounted between the three rollers and pulled in tension to produce three-point 

( a )  Close-up view showing tungsten sheet specimen held (b) Overall view showing tensi le machine, temperature con- 
t ro l ler ,  loading column, rollers, specimen, and furnace. between t h r e e  rol lers.  

Figure 2. - Apparatus for  bend test ing tungsten sheet at temperatures f rom ambient to 1000" F. 



bending. 
furnace. 
Chromel-Alumel thermocouple mounted on the  r o l l e r  assenibly 1/16 inch from the 
specimen. 
within 5' F of the  t e s t  temperature, a f t e r  which t h e  specimen w a s  bent at a 
r o l l e r  t r a v e l  speed of 2 inches per minute until f a i lu re .  
shoot w a s  no more than 5O F during the  run. 
r a t i o  of bend radius  t o  sheet thickness of 4. 

Elevated temperatures were obtained with a platinum-wound resis tance 
All t h e  tests were run i n  air. Temperature w a s  measured by a 

The t e s t s  were performed by allowing the  specimen t o  heat slowly t o  

Temperature over- 
All t e s t s  were made employing a 

Tensile and Creep Studies 

Tensile specimens f o r  both low- and high-temperature t e n s i l e  t es t s  and 
high-temperature creep t e s t s  were machined from 0.36-inch-diameter swaged rod. 
The specimens had a reduced section 1.03 inches long and 0.160 inch i n  diam- 
eter. 

For low-temperature tes t ing ,  i n  order t o  determine the d u c t i l e - b r i t t l e  
t rans i t ion ,  the  sample surfaces were electropolished i n  the  sodium hydroxide 
solution described previously. This procedure, which removed 4 t o  5 mils of 
t he  tungsten f r o m  the  surface, has been shown (ref. 13) t o  improve t h e  repro- 
duc ib i l i t y  of t e n s i l e  d u c t i l i t y  da ta  and a l s o  t o  lower the  d u c t i l e - b r i t t l e  
t r ans i t i on  temperature moderately by reducing surface roughness. Testing w a s  
conducted i n  vacuum a t  a crosshead movement r a t e  of 0.005 inch per minute t o  
about 0.5 percent p l a s t i c  s t r a i n  i n  order t o  define t h e  0.2 percent o f f se t  
y ie ld  strength, a f t e r  which the  crosshead movement rate w a s  increased t o  
0.05 inch per minute t o  f racture .  

Tensile tests a t  2500° t o  4140' F were conducted i n  an evacuated chamber 
(1x10-5 mm Hg) equipped with a tantalum sleeve heater,  which has been described 
previously (ref. 14) .  Crosshead movement ra tes  were t h e  same as those employed 
for low-temperature tes t ing.  Specimen extension during t e s t i n g  w a s  taken as 
equal t o  the  crosshead movement. 

Step-load creep tests were conducted i n  t h e  same t e n s i l e  un i t  and vacuum 
For these tests, furnace as employed f o r  t h e  high-temperature t e n s i l e  tests. 

t h e  loads were increased by approximately 1 0  percent a t  15-minute intervals .  

Constant-load creep tests were conducted i n  a conventional beam-load ma- 
chine equipped with a vacuum s h e l l  and tantalum heater  s i m i l a r  t o  t h a t  used 
f o r  t e n s i l e  tes t ing.  
ment. These measurements were corrected for  s e t t l i n g  and extension i n  t h e  p u l l  
rods based on a correlat ion between optical. da ta  on specimen extension and 
t o t a l  load t r a i n  extension. 

Specimen extensiops were measured from loading rod move- 

Grain s i zes  were measured i n  t h e  heated but undeformed shoulders of all 
t e n s i l e  and creep samples after tes t ing.  

RESULTS AND DISCUSSION 

Recrystall ization Behavior 

Recrystal l izat ion s tudies  were conducted on rod and/or sheet from each of 

9 



TABLE 111. - RECRYSTALLIZATION DATA FOR ARC-MELTED TUNGSTEN AT 2550' TO 3000' F 

Yaterial geometry Average j u s t -  Average 
r e c r y s t a l l i z e d  number 

g r a i n  of g r a i n s  

c e n t i -  
crn meter, 

diameter,a per  cubic 
L O  > 

N 

Reduc- Annealing Frac t ion  Hardness Average Boundary 
t i o n  i n  condi t ion  recrys-  (10-kg load), g r a i n  migrat ion 

a rea ,  t a l -  W N  diam- r a t e ,  

per -  t ,  L, cm/sec 
percentb  Tem- Time, ized  e t e r ,  G, 

a t u r e ,  h r  cm 
OF 

2800 
3000 

1 . 0  1.00 363 3.75x10-3 _ _ _ _ _ _ _ _  
- - - - - - - - 1 .0  1.00 37 6 3.16 

.025-in. - th ick  
s i e e t  

0.33-in.-diam. rod 

0.317 - - - - - - - - 6 . 9 ~ 1 0 - ~  I :E: I ::; 1 1.00 1 :E I 3.42X10-3 I - - - - - -__  
3 . 4 2 ~ 1 0 - ~  2 . 5 0 ~ 1 0 ~  97.2 

Lot. c 
4 .96~10-3  0 . 2 6 ~ 1 0 ~  81 .O 2600 1 . 0  0.65 401 - - - - - - - - - 1.4x10-6 

2000 1 . 0  1 .00 363 5 . 0 5 ~ 1 0 - 3  _ _ _ _ _ _ _ _  
3000 1 .0  1.00 373 4.86 - - - - - - - - 

3 . 3 3 - h - d i a m .  roc 2.41X10-2 .09x104 '40.8 425 A s  swaged I ----- I 
433 I i I ;:: I 429 

2550 

2730 0.05 421 
.35 401 
.60 383 

0.26-in.-diam. roc 1 .27X10-2 '63.3 A s  swaged ----- 455 

2550 1 I 0.0 450 

.13X106 6. 23x10-5 cU2.6 

437 

4.0 37 3 

2730 0.25 0.56 367 
.74 364 

1 . 0  1.00 369 

0.20-in.-dian. rod1 3 . 4 4 ~ 1 0 - ~  /2.44X107 I 94.8  I 2600 I 1.0 I 0.275 I 42; /---------16.6X10-7 

Lot D 

0.36-in.-diam. rod 4 .61~10-3  1 . 0 2 ~ 1 0 ~  83.0 2600 1.0 0.0 455 
442 

3000 1 .0  1.00 376 
2800 I 1.0 1 .09 I 

0.05-in. - th ick  2. 66X10-3 

sheet  
5 . 2 9 ~ 1 0 ~  94.3 2600 

3000 
2800 

1 .0  I t:; I 0.0 1.00 
.068 

468 

380 
478 

aThe J u s t - r e c r y s t a l l i z e d  average g r a i n  diameter  i s  averaged from measurements on r e c r y s t a l l i z a t i o n  specimens 
( t h i s  t a b l e )  and on g r a i n  growth specimens ( t a b l e  V) where no increase  i n  g r a i n  s i z e  was measurable. 
average number of nuc lea t ion  s i t e s  per  cubic  cent imeter  i s  ca lcu la ted  from t h e  average g r a i n  diameter by 
eq. ( 2 ) .  

The 

bReduction a f t e r  ex t rus ion  except where ind ica ted .  

'Reduction a f t e r  annealing f o r  1 h r  a t  3303' F. 
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t h e  f i v e  l o t s  under study. 
havior among the  l o t s  and the  e f f ec t s  of var ia t ions i n  p r io r  s t r a i n  and t i m e  
and temperature of annealing. Data f r o m  these s tudies  a re  presented i n  
t a b l e  111. 

The purpose w a s  t o  determine t h e  var ia t ions  i n  be- 

Typical microstructures of p a r t l y  and f u l l y  recrys ta l l ized  materials are 
shown i n  f igu re  3. These a l so  i l l u s t r a t e  the f a i r l y  wide difference i n  r e -  
c rys t a l l i za t ion  behavior exhibited by the  various lo t s .  

The e f f ec t s  of varying t h e  amount of pr ior  s t r a i n  were studied on material 
f r o m  l o t  A and, t o  l e s s e r  extents,  on materids from l o t s  B and D. Increasing 
t h e  p r i o r  s t r a i n  reduced the  t i m e  required f o r  r ec rys t a l l i za t ion  a t  a given 
temperature i n  l o t s  A and B, while very l imited data  f o r  l o t  D showed l i t t l e  
e f fec t .  This l o t ,  as described e a r l i e r ,  was t h e  only one t o  exhibi t  a worked 
s t ruc ture  after extrusion. Lo t s  A, B, and D a l s o  exhibited the  usual e f f e c t  of 
decreasing recrys ta l l ized  gra in  s ize  with increasing p r io r  s t ra in .  

I 
1 

1 
1 
I 

I n  order t o  compare more quant i ta t ively the  r ec rys t a l l i za t ion  behavior of 
the  various l o t s ,  the  data w e r e  correlated i n  terms of a nucleation and growth 
transformation by the Johnson-Mehl r e l a t i o n  (ref. 15) 

-fzoG3t 
X = l - e  (3) 

where 

X f r ac t ion  recrys ta l l ized  

f grain shape fac tor ,  1 

No 
G boundary migration rate, cm/sec 

t time, sec 

- 
average number of r ec rys t a l l i za t ion  nuclei per un i t  volume, cme3 

The r a t e  of boundary migration G has been shown (ref. 15) t o  be essen- 
t i a l l y  independent of p r i o r  s t r a i n  at  s t r a i n s  grea te r  than about 0.15 and 
has the  same ac t iva t ion  energy as t h a t  f o r  grain boundary self-diffusion. It 
may be taken as an indicat ion of the  annealing response of a given material. 

I n  the  computation of t he  boundary migration rate, the nuniber of nucle- 
a t ion  s i t e s  - 
meter, N shown by equation (Z), a s  w a s  also done i n  reference 16. This i s  i n  
accord with recent r ec rys t a l l i za t ion  theory, as expressed i n  references 1 7  and 
18. New gra ins  a re  thought t o  be formed by coalescence of subgrains (formed 
during p r io r  s t ra in ing)  through solution of t he  d is loca t ion  arrays making up 
t h e  low-angle boundaries. As t he  subgrains become coarse, t h e  d isor ien ta t ion  
between neighboring subgrains increases and t h e  boundaries become more mobile. 
The high-angle boundaries formed a re  then capable of moving by strain-induced 

Bo i s  taken as equal t o  the  number of new grains  per cubic cent i -  



..&. _ . -_ - .~ 

( a )  Lot B; temperature, 2600" F; 7.9 percent recrystallized. 

( c )  Lot B: temperature, 2800" F; 100 percent recrystallized. 

( b )  Lot E; temperature, 2600" F; 0 percent recrystal l ized, 

( d )  Lot E; temperature, 2800" F; 4.5 percent recrystal l ized 

( e )  Lot B; temperature, 3000" F; 100 percent recrystallized. ( f )  Lot E; temperature, 3000" F; 100 percent recrystallized. 

Figure 3. - Microstructures of specimens from lots B and E after swaging 83 percent and anneal ing for  1 h o u r  at various temperatures. X100. 
(Reduced 20 percent i n  pr in t ing. )  
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boundary migration u n t i l  the  new recrystal l ized grains impinge on one an- 
other. ) 

~~ 

Lot 

- 
Values f o r  the number of recrys ta l l iza t ion  nuclei  No and the calculated 

boundary migration r a t e  G are included i n  tab le  111. It i s  seen t h a t  t he  
boundary migration rates are independent of the degree of p r io r  s t r a i n  (within 
the l i m i t s  of experimental e r ro r )  f o r  a given l o t  of material. 
c rys t a l l i za t ion  behavior of each l o t  may be semiquantitatively - described i n  
terms of the  nuTdber of r ec rys t a l l i za t ion  nuclei No, which i s  a function of 
p r io r  s t r a in ,  and the rate of strain-induced boundary migration G, which var- 
i e s  with temperature. 

Thus, t he  re- 

~~~ 

Tem- 
per- 
ature, 

O F  

The average boundary migration r a t e s  f o r  t he  various l o t s  are  given i n  
t ab le  I V  and p lo t t ed  i n  f igure  4. The temperature dependency of G may be 

A 

B 

C 

D 

E 

TABLE IV. - AVERAGE RECRYSTALLIZATION RATES FOR 

ARC-MELTED "UNGSTETJ AT 2550' TO 2600' B 

2550 40.8 5. 
63.3 6.9 
62.6 5.0 

2730 40.8 2.Zx10-6 
63.3 3.2 
82.6 5.0 

2600 83.0 5. 
94.8 6 -6  
97.2 6.9 

2600 81.0 1.4x10 -6 

2800 83.0 5 

2800 83.0 5. T X m 7  

94.3 3.1 

~~ 

Reduction 
in area, 
percent 

Logarithmic 
average of 
boundary 
migration 

rate for each 
reduction, 
cm/sec 

Logarithmic 
average of 
boundary 
migration 

rate for each 
lot, 
cm/sec 

5 . 6 ~ 1 0 - ~  

3 . 3X10-6 

6 . 5 ~ 1 0 - ~  

1.4x10-6 

4. 

segregation t o  t h e  grain boundaries (refs. 

expressed by 

(4 )  
G = Goe -QR/RT 

from which the  ac t iva t ion  energy 
for  boundary migration i n  l o t  A i s  
calculated a s  104,500 ca lor ies  per 
gram-mole. This value i s  close t o  
the ac t iva t ion  energy of about 
100,000 ca lo r i e s  per gram-mole ob- 
tained i n  reference 19 f o r  recrys- 
t a l l i z a t i o n  of undoped powder- 
metallurgy tungsten rod. These ac- 
t iva t ion  energy values are a l s o  
close t o  those f o r  gra in  boundary 
self-diffusion, which has been es- 
timated as 0.4 t o  0.7 of the volume 
self  -diffusion ac t iva t ion  energy 
(refs .  20 and 21) .  Taking the  lat- 
t e r  term as 153,000 ca lor ies  per 
gram-mole (ref. 22) gives the  es- 
timated range a s  61,000 t o  107,000 
calor ies  per gram-mole. That the 
observed values l i e  toward the high 
end of t h i s  estimated range may be 
taken as an indicat ion of impurity 
20 and 23).  

QR 

I n  comparing the  calculated boundary migration rates with the ana ly t ica l  
data i n  t ab le  I, it appears t h a t  t he  three  purest l o t s ,  A, B, and C, have m i -  
grat ion r a t e s  t h a t  are appreciably greater  than those f o r  t h e  less pure l o t s ,  D 
and E. This qua l i ta t ive  r e l a t i o n  between puri ty  and r ec rys t a l l i za t ion  be- 
havior i s  i n  accord with recent s tudies  indicating tha t  d i l u t e  a l loy  addi t ions 
are extremely e f fec t ive  i n  reducing the  r a t e s  of strain-induced boundary m i -  
grat ion (refs. 2 3  and 24). 

It should a l s o  be recognized tha t  inpur i t ies  can a f f ec t  t he  rate of 

13 



Inverse absolute temperature, OK-' 
I I I I 

2800 2730 2600 25% 
Temperature, 9 

Flgure 4. - Temperature dependence of strain-induced boundary migration rates of 
arc-melted tungsten. 

subgrain coalescence p r i o r  
t o  the  formation of s m a l l ,  
high-boundary-angle nuclei  , 
as shown by the  results of 
reference 25. A reduction 
i n  the r a t e  of subgrain 
coalescence would reduce 
the  apparent r a t e  of nu- 
c l ea t ion  without reducing 
the  t o t a l  number of nuclei  
and would show up i n  the  
cor re la t ion  employed here 
as an apparent reduction 
i n  the  strain-induced 
boundary migration r a t e  G. 
Thus, it i s  not ye t  c l ea r  
whether t h e  major e f f e c t  
of impuri t ies  i s  i n  reduc- 
t i o n  of low-angle subgrain 
growth or i n  t he  subse- 
quent high-angle boundary 
migration ra te .  It does - 

appear , however , t h a t  ce r t a in  impurit ies,  which most l i k e l y  include aluminum, 
chromium, iron, nickel,  and s i l icon ,  decrease the r a t e  of the overa l l  recrys- 
t a l l i z a t i o n  process i n  arc-melted tungsten. 

Grain Growth Behavior 

Grain growth behavior of each of the  f i v e  l o t s  were studied by annealing 
swaged o r  ro l l ed  material f o r  times from 1 t o  1 4  hours a t  3300' t o  4200' F. 
The average grain diameters before and a f t e r  the various annealing treatments 
a re  summarized i n  t ab le  V. 

I n  order t o  compare t h e  grain growth cha rac t e r i s t i c s  of t he  individual  
l o t s  quant i ta t ively,  it w a s  assumed t h a t  gra in  growth w a s  ideal;  t h a t  i s ,  the 
m<gration of the individual boundaries w a s  not re tarded by p rec ip i t a t e s  or 
xiicrovoids. The equation r e l a t ing  gra in  s i ze  and time a t  a given temperature 
under these idea l  conditions has been given i n  reference 26 as 

2 Lz - Lo = K t  

where 

L f i n a l  average gra in  diameter, cm 

Lo 

K 

t time, sec 

i n i t i a l  average gra in  diameter, cm 

parabolic growth rate, sq cm/sec 

(5) 
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TABLE V. - GRAIN GROM" DATA FOR ARC-MELTED TUNGSTEN AT 3300' TO 4200' F 

4000 1 
2 

Material geometry 

l.lBx10-2 2.acL0-8 
2.73 9.7 

0.33-in.-diam. rod 

0.36-in.-diam. rod 4.86~10-~ ---- 3500 
3800 
4000 
4200 

0.26-in. -dim. rod 

1 9.19x10-3 1.7X10-8 
1 2.3c1(10-2 l.4X10-7 
1 5.61x10-2 8 . 7 ~ 1 0 ~ ~  
1 9.54x10e2 2.5x10-6 

0.78-in. -dim. rod 

O.20-in.-diam. rod 

Estimated 
initial 
grain 

diameter , 

3.44xLO-3 ---- 3300 1 5.09)(10-3 4.a<10-9 
3500 1 7.31x10-3 l.acLO-8 
3800 1 2.2z~10-~ 1.3~10-~ 

I 

0.36-in.4iam. rod 4.96X10-3 ---- 3500 1 7.52~lO-~ 
3800 1 1.7Bx10-2 
4000 1 5.56XlO-' 
4200 1 1.04xLO-1 

~ 

Reduct ion 
in area 

swaging, 
percent 

by 

8.9~lO-~ 
8.W04 
B.E$uO-~ 
3.0x10-6 

Annealing 
condition 

0.36-in.-diam. rod 4.52X~O-~ ---- 3500 1 5.43X10-3 

4000 1 1.53X10-2 
4200 1 6.6Bx10-2 

0.05 -in.-thick 2 .66XL0-3 ---- 3300 1 3.03K~O~~ 
sheet 3500 1 4.04~lO-~ 

3800 1 2.4ZX10-2 

3800 1 6. 2 7 ~ 1 0 ~ ~  

diameter , 
em'/ s e c 

ELE$UO-~ 

5.9X10-8 
1.acLO-6 

5.Bx10-10 
2.5XLO-' 
1.6X10-8 

5.0X1C~-~ 

I 

0.36-in.-dim. rod 

1.1BX10-2 

4.08)<10-3 

L.2EscL0-2 63.3 

82.6 

I I 1 
4200 I 2 I 4.0~10-~I2.acio-~ 

---- 3500 
4000 1 4200 
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TABLE V I .  - AVERAGE GRAIN GROWTH RATES FOR ARC- 

MELTED TUNGSTEN A T  3300' TO 4200' F 

Tem- 
per- 
ature, 
OF 

Logarithmic Tem- Logarithmic 
average of per- average of 
grain growth atEre, grain growth 
rate at each F rate at each 
temperature, temperature, 
cm2/sec crnZ/s e c 

Lot c 

Lot A 

3500 4.1x10-9 
3800 2.aC10-8 
4000 4.6X0-8 
4200 2.a(10-7 

~ 

Lot B 
~ , -  

3300 3.ZxLO-' 
3500 1.4X10-8 

4000 8.7X10-7 
3800 1.4~10-7 

4200 2. 5X10m6 

I 41 

Lot D 

3300 5.8x10-10 
3500 2.5~10-9 
3800 1.lx10-8 

4200 1.2x10-6 
4000 5.9X10-8 

Lot E 

3500 1.4~10-9 

4200 1.7~10-7 
4000 2.3X10 -8 

3500 
3800 
4000 
4200 

This equation w a s  used t o  calculate  
a value of  K f o r  each annealing 
treatment by assuming Lo equal t o  
the  jus t - recrys ta l l ized  grain diam- 
e t e r  measured during the recrys- 
t a l l i z a t i o n  studies.  The values of 
K at each temperature were loga- 
r i thmical ly  averaged f o r  each lot 
and are  tabulated i n  t ab le  V I  and 
p lo t ted  i n  f igure  5. 

8.9XlOq9 
8.1X10-8 
8.5XlO-7 
3,0X10-6 

As seen i n  f igure  5, the grain 
growth rates vary considerably among 
the  f i v e  l o t s .  L o t s  B and C exhib- 
i t e d  the  highest  r a t e s  a t  a l l  tem- 
peratures  while l o t s  D and E exhib- 
i t e d  the lowest. Also, the  rates 
f o r  a l l  f i v e  l o t s ,  showed an approx- 
imately l i n e a r  Arrhenius r e l a t i o n  
below 3800' F but deviated upward a t  
the  higher temperatures. 

A comparison of the  curves i n  
f igure  5 with ana ly t ica l  data  f o r  
the  various l o t s  ( tab le  I)  suggests 
a cor re la t ion  between gra in  growth 
behavior and puri ty .  With the  ex- 
ception of l o t  A, t he  gra in  growth 

r a t e s  tend t o  decrease with increasing impurity content. Minor metal l ic  i m -  
p u r i t i e s  have been shown t o  r e t a rd  grain growth markedly i n  lead ( re f .  27 )  and 
t i n  ( ref .  28).  No cor re la t ion  could be found i n  the  present da ta  t o  show t h a t  
any one impurity w a s  responsible f o r  t he  re ta rda t ion  i n  grain growth i n  l o t s  D 
and E. 

It i s  suggested t h a t  the low growth r a t e s  i n  l o t  E, at  l ea s t ,  were due t o  
the presence of grain-boundary prec ip i ta tes .  Figure 6 shows evidences of d i s -  
continuous grain growth found i n  l o t  E after annealing at 4200° F f o r  1 hour. 
It has been shown previously (ref. 29) t h a t  discontinuous grain growth i s  
caused by p a r t i a l  dissolut ion or coalescence of grain-boundary prec ip i ta tes ,  
which re ta rd  grain-boundary migration at  t h e  lower temperatures. 
enon is  believed responsible f o r  t h e  sharp increases i n  K observed above 
3800' F. 

This phenom- 

It i s  useful here t o  compare the  da ta  given previously with comparable 
values for  commercial powder-metallurgy tungsten. I n  reference 30, grain s izes  
were measured f o r  f i v e  l o t s  of commercial sheet a f t e r  t e n s i l e  and creep t e s t i n g  
a t  temperatures above 3600' F. 
grained (4x10'3 em) and did not show any subs tan t ia l  grain growth below approx- 
imately 4000° F. 
prec ip i ta tes  i n  those materials than observed i n  the  present arc-melted 
materials. 

Four of the f i v e  l o t s  were r e l a t ive ly  f i n e  

This behavior i s  a t t r i bu ted  t o  a greater  densi ty  of boundary 
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3. a 4.0 4.2 4.4 4.6 4.8 5.C1xlO-~ 
Inverse absolute temperature, OK-' 

I 
3500 3300 

Temperature, OF 

Figure 5. -Temperature dependence of grain growth rates of arc 
melted tungsten. 

Figure 6. - Lot E, annealed for 1 hour at 4200" F, showing discontinu- 
ous grain growth. XlM). (Reduced 20 percent in printing.) 

Ducti le-Bri t t le  Tensile 

Transit ion Behavior 

Tensile propert ies  of l o t s  
A t o  D were studied a t  300' t o  
750° F i n  two conditions, stress- 
r e l i e f  annealed for 1 hour a t  
1800° F and recrys ta l l ized  by a 
1-hour anneal. a t  2900' or 
3000' F. Data from these stud- 
i e s  are given i n  t ab le  VII. 
Figure 7 shows a p l o t  of the  
percent reduction i n  area 
against  t e s t  temperature f o r  the  
stress-relief-annealed materi- 
als, while f igure 8 i s  a s imilar  
p lo t  for t he  recrys ta l l ized  ma- 
terial .  Lack of material  pre- 
cluded a more complete evalua- 
t i o n  of these properties.  

The stress-relief-annealed 
materials exhibited a more grad- 
u a l  decrease i n  d u c t i l i t y  with 
decreasing t e s t  temperature than 
did the  f u l l y  recrys ta l l ized  ma- 
terial. The t r ans i t i on  tempera- 
t u r e  ( a r b i t r a r i l y  defined as the  
temperature f o r  40 percent re- 
duction i n  area, which reduction 
i s  one-half of the maximum of 
80 percent expected above the  
duc t i l e -b r i t t l e  t r a n s i t i o n  t e m -  
perature)  w a s  lowest f o r  lot D 
(36m25' F) and highest  f o r  
l o t s  C (52E25O F) and A 
(530*5O0 F) . 

The t r a n s i t i o n  temperature i n  t h i s  
condition followed the  usual correla-  
t i o n  with the  degree of p r io r  warm 
work. Lot D, with the lowest t r ans i -  
t i o n  temperature, had 83.6 percent warm 
reduction, while l o t  A, with a much 
higher t r ans i t i on  temperature, had o n l y  
64.5 percent w m  reduction a f t e r  ex- 
trusion. Cold- or warm-working a f f e c t s  
the  t r a n s i t i o n  temperature through i t s  
ef fec t  on subgrain size.  Finer sub- 
grain s i zes  or fiber widths have been 
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TABLF VII. - TENSILE PROPERTIES OF ARC-MELTED TUNGSTEN AT 300' TO 750' F 

Annealing Test 0.2-Percent 
condition tern- offset yield 

Tea- Time, ature, psi 
per- t, 
ature, hr 

per- strength, 

OF 

O F  

Ultimate Elong- Reduction Trans- Average 
tensile ation, in area, ition grain 
strength, percent percent tern- dim- 

UTS , per- eter, 
psi ature, L, 

cm OF 

1800 1 450 94,400 
550 74,700 

3000 1 625 "26,100- 
22,300 

19,700 
710 a20,600- 

107,700 0 4.7 520 --- 
--- 85,400 19.0 47.3 --- 

54,000 48.6 46.7 (625 2.26X10-2 

51,100 52.0 57.5 --- 2 .26x10-2 

%o values denote upper and lower yield points. 
bBrittle fracture stress. 

1800 1/4 355 92,400 
440 86,100 
495 86,400 

3000 1 490 '36,600- 

570 '26,700- 
31,000 

23,600 

shown t o  r e s u l t  i n  lower t r a n s i t i o n  temperatures i n  tungsten ( r e f .  31). 

114,200 14.8 31.0 430 --- 
107,000 21.6 41.0 --- --- 
97,300 31.2 65.2 --- --- 
62,800 40.1 29.8 510 1 .05X10-2 

58,800 61.3 65.3 --- --- 

Ut'nough it w a s  not possible  to document the  d u c t i l e - b r i t t l e  t r a n s i t i o n  
behavior of the  recrys ta l l ized  materials fu l ly ,  it i s  evident t h a t  the t r a n s i -  
t i o n  temperatures were higher than those f o r  the  recovery-annealed materials,  
as expected. Lot B had a t r a n s i t i o n  temperature of 510f50° F, while t h a t  for 
l o t  A was less than 625' F. The t r a n s i t i o n  temperature grea te r  than 700' F f o r  
l o t  D w a s  somewhat surpr is ing i n  view of i t s  low t r a n s i t i o n  temperature i n  the  
recovery-annealed condition and i t s  f i n e r  gra in  s ize  compared with l o t s  B and C. 

1800 1 450 103,500 
530 87,000 
6 50 84,100 

3000 1 750 19,100 

18 

118,900 23.3 28.5 520 --- 
101,000 12.0 41.3 --- --- 

--- --- 93,900 26.8 67.2 

54,800 55.0 69.4 <750 9.0lX10-' 

1800 1 300 124,500 139,400 14.0 24.5 355 --- --- --- 410 99,500 114,900 24.4 53.8 
510 113,800 123,800 19.0 68.2 --- --- 

2900 1 520 --- b54,400 0 ' 0 >700 --- 
--- --- 700 --- b47,300 0 0 



Figure 7. - Ductile-brittle tensile transition behavior of arc-melted 
tungsten after annealing at l&l@ F. 

Figure 8. - Ductile-brittle tensile transition behavior of 
arc-melted tungsten afler recrystallization annealing. 

Discontinuous yielding, a s  evidenced by a y ie ld  point drop, w a s  observed 
Figure 9 shows i n i t i a l  portions of 

the s t r e s s - s t r a in  curves f o r  speci- 
mens from l o t s  A t o  C. Lots A and B 

points, while l o t  C showed only a 
Luder' s plateau at  the  lower y ie ld  

1 percent st ress .  Discontinuous yielding has 
been observed previously i n  recrys- 
t a l l i zed  powder -metallurgy tung st  en 
containing 30 p a r t s  per mil l ion of 
carbon (ref. 7 )  and a l s o  i n  comner- 
c ia1  powder-metallurgy tungsten a f t e r  
annealing below 2430° F (ref. 25). 
The present observations cannot be 
re la ted  d i r ec t ly  t o  e i the r  of t he  
previous observations, since discon- 
tinuous yielding w a s  found here i n  
materials annealed a t  2900' or  
3000' F and containing only 4 t o  9 

pears possible, however, t h a t  t he  

i n  a l l  t he  f u l l y  recrys ta l l ized  materials. 

40- 
- showed d i s t i n c t  upper and lower y ie ld  

H 

Figure 9. -Types of yielding observed in recrystallized arc- 
melted tungsten at to 7500 F. par t s  per mil l ion of carbon. It ap- 

processing differences between arc-melted and powder-metallurgy tungsten could 
a f f ec t  the  d i s t r ibu t ion  of i n t e r s t i t i a l  impurities, so t h a t  a given amount of 
i n t e r s t i t i a l  might be more effect ive i n  promoting discontinuous yielding i n  
arc-melted tungsten than i n  powder-metallurgy tungsten. 
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Ductile-Brittle Bend Transition Behavior 

Annealing 
temper- 
ature, 
OF 

Bend transition temperatures were determined on sheet rolled from lots B 
and D after annealing for 1 hour at 1800' to 4200' F. 
transition temperature was defined as the median between the highest tempera- 
ture at which the material was brittle and the lowest temperature at which it 

The ductile-brittle 

Ductile- 
brittle 
transition 
temper - 
ature , 
OF 

was ductile. These data are presented in 

Estimated 
percent 
recrystal- 
lized 

TABU VIII. - DUCTILE-BRITTLF: BENE TRANSITION 
TEMPERATURE OF ARC-MELTED TUNGSTEX SHEET AS-ROLLED 

AND AFTER ANNEALING FOR 1 HOUR AT 1800' TO 4200' F 
~ 

Average 
grain 

diameter, 
L, 

I 
As -rolled 
16 00 
2000 
2200 
2300 
2400 
2500 
2600 
3000 
3400 
3700 
4000 

As -rolled 
2200 
3000 
3 500 
4000 
4200 
I 

Lot B 

218 
263 
2 53 
256 
375 
400 
568 
6 55 
638 

613 
706 

685 

0 
0 
0 
0 
23 
60 
95 
100 
100 
100 
100 
100 

Lot D 

675 
666 
680 100 
I 

table VI11 along with the metallo- 
graphically determined percentage 
recrystallization and the average 
grain diameter for each annealing 
condition. Figure 10 is a plot of 
the bend transition temperature 
against the 1-hour annealing tem- 
perature for each lot. 

The transition temperature in 
the as-rolled condition was approx- 
imately the same for lots B and D 
(218' and 212' F, respectively). 
These are significantly lower than 
the respective tensile transition 
temperatures of 440' and 355' F for 
similar material in the stress- 
relieved condition. Recovery 
annealing of l o t  B and 1800' F in- 
creased the transition temperature 
by about 50' I?. 
slightly higher temperatures did 
not significantly alter this value 
until the onset of primary recrys- 
tallization above 2200° F. After 
full recrystallization, the transi- 
tion temperatures remained essen- 
tially independent of annealing 
temperature and of grain size for 
both lots B and D. 

Annealing at 

In comparison, the bend tran- 
sition temperature of worked 
(92 percent warm reduction) powder- 
metallurgy sheet is about '212' F 

Grain size approximates sheet thickness. a 

(ref. I.). 
of this powder-metallurgy sheet compared with lots B and D (83.6 percent warm 
reduction after extrusion) from the present work. 
brittle transition was observed for the powder-metallurgy sheet, while no such 
minimum was shown in the present work. Annealing above the temperature for the 
onset of recrystallization resulted ir? a sharper increase in the diuctile-brittle 
transition for the powder-metallurgy material than for the arc-melted material. 

Figure 10 is a comparison of the ductile-brittle transition behavior 

A minimum in the ductile- 

The effects of annealing temperature on the bend transition temperature 
outlined previously can be compared with those effects on the tensile transi- 
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Figure 10. - Ductile-brittle bend transition behavior of arc-melted and pder-metallurgy tungsten annealed for 
1 hour. (Upper and lower levels of scatter bands indicate highest temperature at which material was brittle 
and lowest temperature at which material was ductile, resp.) 

t i ons  of powder-metallurgy w i r e .  
ing i n  the  recovery range increases the t r ans i t i on  temperatures, presumably be- 
cause of an increase i n  the  f i b e r  widths observed metallographically. 
widths measured on sheet from l o t  B, annealed a t  1800°, 2000°, and 2200' F, 
ranged from 1 . 7 1  t o  2.12XlO'* centimeter. 
temperature on annealing i n  t h i s  temperature range compared with those f o r  t he  
as - ro l led  mater ia ls  may be re la ted  t o  small increases i n  f i b e r  width. 

References 31 and 32 have shown t h a t  anneal- 

Fiber 

The small increases i n  t r a n s i t i o n  

High-Temperature Tensile Propert ies  

High-temperature t e n s i l e  data  were obtained on material  from l o t s  B t o  E 
i n  the worked condition and a f t e r  various annealing treatments. 
presented i n  t a b l e  IX. 
a ture  i s  shown i n  f igure  ll. 

These da t a  are 
A p lo t  of the  ultimate t e n s i l e  strength against  temper- 

Considerable var ia t ion  i n  strength propert ies  i s  observed not on ly  among 
the  four l o t s  studied but a l s o  as a function of s t ructure;  however, when grain 
s i ze  (measured i n  the specimen shoulder a f t e r  t e s t i n g )  i s  considered, the  prop- 
e r t i e s  of annealed mater ia ls  cor re la te  wel l  without regard t o  l o t .  
y ie ld  and ult imate strength against  average grain diameter, shown i n  f igure  12, 
reveals  t h a t  the  strengths decrease with increasing grain size.  The grain-size 
dependencies, which appeas unaffected by temperature over the range f rom 2500' 
t o  3500' F, may be expressed as 

A p l o t  of 

( 7 )  
-0.25 

YS = & 

2 1  



TABLE IX. - TENSILE PROPERTIES OF ARC-MELTED TUNGSTEN AT 2500’ TO 4140’ F 

Test Annealing 0.2-Percent Ultimate Elong- 
tem- condition offset tensile ation, 
per- yield strength, percent .. 
ture, Tem- Time, strength, UTS, 
OF per- t, psi psi 

ature, hr 
0 F 

Lot B 

Reduction 
in area, 
percent 

Average 
grain 

diameter, 

cm 
L, 

Strain- 
hardening 
coefficient , 

x, 
p s i 2  

----- 2500 As swaged 31,200 34,000 23.2 95.9 (a) 

3000 1 9,180 23,800 57.4 >98 4. 22)<108 

3000 1800 1 / 4  5,700 15,460 61.5 90.5 5 . 8 ~ 1 0 - ~  12x108 

2800 1 4,700 b14,500 70.9 93.7 5. 1 2 ~ 1 0 ~  

3500 1800 1 / 4  4,500 10,230 75.4 91.4 6.  5. OX108 

2800 1 3,830 10,300 76.0 92.5 6.4X10 -3 5. 5X108 

4200 4 2,220 7,750 62.9 >95 64X10-3 3 .3X108 

4140 1800 1 /4  1,500 4,300 73.1 >98 2 5x10-3 1. 3X108 

I 2800 I 1 I 1,400 I 4,700 I 62.6 I >98 1 ~ w O - ~ I  1.7X108 

Lot c 
2500 IAs extrudedl 14,280 1 25,350 I 30 1 90.5 I (a )  1 ------- 

------- As swaged 24,400 36,000 20.3 95.0 (a) 

3600 1 6,420 18,500 57.7 >95 4 3 ~ 1 0 - ~  12x108 

------ 3000 As extruded 8,620 16,910 47.8 61.7 (a) 

------ As swaged 18,720 25,100 17.7 83.6 (a )  

3600 1 3 , 940 11,920 38.4 >95 ( C )  6. &lo8 

3500 As swaged 4,150 10,270 78.9 87.6 g .3x10 -3 - - -- - - - 
3600 1 2,880 8,030 69.2 >95 3 S ~ 1 0 - ~  3 .aX108 

3800 1 2,760 7,880 56.3 >95 4 6 ~ 1 0 - ~  3 .aX108 

4000 1 2,690 7,430 61.2 >95 96x10-3 2. 5X108 

I 4100 I 1 I 2,220 I 7,760 I 59.1 I >95 I 9 3 ~ 1 0 ~ ~ 1  3.4X108 

4200 4 2,360 I 7,500 I 61.4 I >95 I 105x10-31 3.1xio8 

“Fully or partly worked microstructure. 
bTested at 0.002/0.02 min-l, all other samples tested at 0.005/0.05 min 
‘Grain size estimated from measurements on similar samples. 

-1 . 
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TABLE IX. - Concluded. TENSILE PROPERTIES OF ARC-MELTED TUNGSTEN AT 2500' TO 4140' F 

0.2-Percent 
off set 
yield 

psi 
streneh, 

Ultimate 
tensile 
strength: 

IPTS, 
psi 

Elong- 
ation, 
percent 

Reduction Average Strain- 
in area, grain hardening 
percent diameter, coefficient, 

L, *, 
ern psi2 

ature, 
OF 

hr 

aFully or  partly worked microstructure. 
bTested at O.OOZ/O.OZ min-l, all other samples tested at 0.005/0.05 min-l. 
'Grain size estimated from measurements on similar samples. 

3000 

23 

----- As swaged 10,200 15,800 49.8 88.9 (a) 

----- 2900 1 17 , 900 23,400 41.2 98.8 I (a) 



where 

YS yie ld  strength,  p s i  

Temperature, OF 

Figure 11. - Effect of temperature on ultimate tensile strength of worked and 
recrystallized arc-melted tungsten at 25000 to 41400 F. 

UTS ultimate t e n s i l e  
strength,  p s i  

A, A proport ional i ty  
f a c t o r s  

L average g ra in  diam- 
e t e r ,  cm 

Thus, decreasing the  grain 
s ize  from 10-1 centimeter, 
t yp ica l  f o r  arc-melted 
tungsten annealed above 
4000' F, t o  5 ~ 1 0 - ~  cent i -  
meter, t yp ica l  f o r  j u s t -  
recrys ta l l ized  arc-melted 
or powder-metallurgy tung- 

sten,  increases the y i e ld  s t rength by 80 percent and the ultimate s t rength by 
40 percent. It i s  a l so  per t inent  t o  note t h a t  the l e s s  pure materials, such as 
l o t  E, had f i n e r  gra in  s izes  and hence were stronger than the  purer mater ia ls ,  
such as l o t  C. Pur i ty  appears t o  a f f e c t  t he  high-temperature s t rength ind i -  
r ec t ly ,  since impurit ies tend t o  r e s t r i c t  g ra in  growth and cause a fine-grained 
structure,  which i n  tu rn  increases the  t e n s i l e  strength.  

24 

OF 

i I I I l i l r - t  0 2500 

Average grain diameter, I, cm 

Figure 12. -Effect of grain size on yield and ultimate tensile strengths of arc-melted 
tungsten at 2500Oto 3500' F. 

True-stress - t rue-  
s t r a i n  curves were con- 
s t ruc ted  from t e n s i l e  da t a  
f o r  the r ec rys t a l l i zed  ma- 
t e r i a l s  by assuming t h e  
specimen elongation t o  be 
equal t o  the crosshead mo- 
t ion .  These flow curves 
exhibited t h e  expected 
parabolic behavior a f t e r  
the  i n i t i a l  e l a s t i c  s t r a in ,  
r e f l e c t i n g  the  decrease i n  
strain-hardening capacity 
with increasing p l a s t i c  
s t r a i n  ( r e f s .  33 and 34). 
Representative normal and 
parabolic p l o t s  of flow 
curves are shown i n  f i g -  
ures 13 and 14. 

Strain-hardening co- 



.- 
VI n 

D 

111 
111 
0) 
L 
c 111 

0) 
x 

I= 

e f f i c i e n t  s 

True strain, E 

Figure 13. -Effect of temperature on tensile flow curves of arc-melted tungsten at 25000 to 41400 F. 

were determined f r o m t h e  r e l a t ion  

X =  
E 

True strain, E 

Figure 14. - Parabolic plot of tensile flow curves for arc-melted 
tungsten at 2 . X d  to 41400 F. 

where 

X strain-hardening coef f ic ien t ,  
psi' 

CT t rue  s t r e s s ,  p s i  

YS y ie ld  s t r e s s ,  ps i  

E t r u e  p l a s t i c  s t r a i n  

(9) 

These coeff ic ients  a re  included i n  
table  IX. A s  i l l u s t r a t e d  i n  f ig -  
ure 14, the  experimental da ta  a t  
2500' F gave a good f i t  when p lo t ted  
parabolically,  but a t  higher temper- 
atures,  reasonable f i t s  were obtained 
only at l o w  s t ra ins .  The deviation 
a t  higher s t r a i n s  i s  a t t r i bu ted  t o  
grain-boundary t ea r ing  and s l iding,  
which inva l ida te  the  assumptions of 
constant volume and uniform def orma- 
t ion  upon which the  t rue - s t r e s s  - 
t rue - s t r a in  calculat ions a r e  based. 

The strain-hardening coef f ic ien ts  were a l so  observed t o  decrease with in- 
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creasing grain size,  as i l l u s t r a t e d  i n  f igu re  15. ?"ne gra in  s i ze  dependency 
varied only s l i g h t l y  i f  a t  a l l  with 
temperature and could be expressed 
by 

.004 .006 .01 .02 .03 .04 .06 .1 .2 
Average grain diameter, L, cm 

Figure 15. -Effect of gra in size on strain-hardening coefficient 
of arc-melted tungsten at 250O0 to 4140' F. 

Variations i n  s t rength and 
strain-hardening coef f ic ien ts  with 
grain s i ze  have been observed pre- 
viously (refs. 35 and 3 6 ) ,  although 
a complete p ic ture  of the  mechanism 
has not ye t  emerged. I n  r e fe r -  
ence 36, it has been suggested t h a t  
the  increased s t rength with decreas- 
ing grain s ize  r e s u l t s  f r o m t h e  in-  
creased complexity of s l i p  within the  
individual  grains.  During deforma- 
t i o n  of a polycrystal l ine mater ia l ,  
the  individual gra ins  a r e  p a r t l y  
constrained by t h e i r  neighbors, so 
t h a t  s l i p  on a given plane can pro- 
ceed only t o  the  extent  t h a t  the  

neighboring grains can deform t o  aceommodate the changing grain shape. As  the  
l i m i t  of deformation i n  a given d i rec t ion  i s  approached, t he  resolved s t r e s ses  
within the gra in  increase,  and s l i p  begins on other planes more favorably o r i -  
ented with respect  t o  the  neighboring grains.  
t he  t o t a l  s t r a i n  t h a t  can be accommodated on the most favorably or iented s l i p  
planes, and the  s t r e s s  increases more rap id ly  with t o t a l  s t r a i n  i n  order t o  
ac t iva t e  s l i p  on less favorably oriented planes, giving r i s e  t o  the  observed 
increasing s t rength and strain-hardening r a t e  with decreasing gra in  s ize .  

Decreasing gra in  s i ze  reduces 

I n  comparison with arc-melted material ,  the  s t rength of powder-metallurgy 
tungsten ( r e f .  14)  included i n  t a b l e  IX, i s  equivalent o r  s l i g h t l y  higher when 
compared on the  b a s i s  of equal grain s izes .  A t  3500' F the  powder-metallurgy 
tungsten i s  as  strong as fine-grained ( 5 ~ 1 0 ' ~  em) arc-melted tungsten, while a t  
4100' F the powder-metallurgy mater ia l  i s  about 40 percent stronger than the  
fine-grained arc-melted materials.  The major difference between the  two ma- 
terials, however, l i e s  i n  t h e i r  high-temperature d u c t i l i t i e s .  While arc-melted 
tungsten i s  r e l a t i v e l y  duc t i l e  a t  a l l  temperatures above i t s  d u c t i l e - b r i t t l e  
t r ans i t i on  temperature, powder-metallurgy tungsten exhib i t s  low d u c t i l i t y  i n  
the  temperature range of 2500° t o  4000' ( r e f .  1 4 ) .  This l o w  d u c t i l i t y  may be 
associated with grain-boundary pinning by impurit ies,  which r e s t r i c t s  the  ex- 
t e n t  t o  which gra ins  may deform t o  accommodate the intragranular  s l i p  (ref. 37). 

High-Temperature Creep-Rupture Propert ies  

Constant-load creep s tudies  were conducted a t  3000' and 3500' F on worked 
and annealed materials from lots A and E, with r e s u l t s  as presented i n  t a b l e  X. 
Step-load creep s tudies  were a l so  conducted a t  3000°, 3500°, and 4000' F on 
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TABLE X. - CONSTANT CIIFEP-RupT[TRF DATA FOR ARC-MELTED 

TUNGSTEN AT 30Oo0 AM, 3500' F 

4100 1 2,300 0. 961)(10-3 0.343x10-6 
3,020 _ _ _ _ _ _ _ _ _ _  1.43 
5,150 _ _ _ _ _ _ _ _ _ _  72 -1 

Annealing S t ress ,  Transient  Steady Rupture Tota l  Reduc- 
condi:ion I P s i  1 

er;~: I E;;:; 1 tim;, lg;mi,ltg~ 

b6100 ---- ---- 
1486.0 30.8 >98 

35.9 32.3 >98 

a ture ,  

4200 

A s  swaged 

1 
1 1,980 0 . 6 9 O ~ l O - ~  0.131X10-6 '6785.0 ---- --- 

2,470 _____-__-_ .742 d9168.5 22.0 14.0 
3,040 _-_____-_- 1.43 l l91.3 44.1 15.1 
5,040 ____- -____ 20.3 189.2 22.4 31.8 

Lot E 
Test temperature, 3000' F 

A s  swaged 

Average 
gra in  

diameter , 
cm 
L, 

7 

2,980 ---------- 0.637)(10-6 4790.4 35.8 32.7 5 .6X10-' 
5,130 -_________ 6 -14 714.6 61.5 61.7 5.5 

2673.1 
429.2 

6541.8 
1353.6 

257.7 

4100 

* 40.6 

1 2,400 0.864X10-3 0.215X10-6 43800 >9,0 >4.6 12.7X10-' 
3,580 ---------- 2.32 1207.2 31.7 66.2 11.5 

7. 
5.3 

2x10-3 
9 -6 

19.5 

Lot E 

92>(10-~ 
1 8 7  
182 

______~ ~ 

aRate increased from 3,6ac10-6 t o  9.8x10-6 sec- l  a f t e r  100 min. 

bEstiniated rupture  t i m e .  
CLoad increased t o  2470 psi. 
dTotal  l i f e  including 6785 min a t  1980 psi .  
eTest discontinued. 

mater ia l  f rom l o t s  D, F, and G. Data o.n the step-load t e s t s  a re  presented i n  
t ab le  XI.  

Representative creep curves, shown i n  f igu res  1 6  and 17 ,  indicate  t h a t  the 
creep behavior of tungsten i n  t h i s  temperature range may be represented 5y 
periods of t r ans i en t  or primary creep, steady or secondary creep, and t e r t i a r y  
creep. During t r ans i en t  creep, s t r a i n  hardening occurs more rapidly than does 
thermal recovery, causing the  instantaneous creep r a t e  t o  diminish with time. 
A s  the  creep r a t e  decreases, a balance i s  achieved between the  r a t e s  of s t r a i n  
hardening and recovery, giving a constant creep r a t e .  Ter t ia ry  creep i s  gen- 
e r a l l y  associated with necking of the specimen and/or the formation of i n t e r n a l  
voids at  the  grain boundaries. 
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TABLE XI. - STEP-LOAD CREEP DATA FOR ARC-MELTED TUNGSTEN AT 3000’ TO 4000’ F 

Steady 

-1 see 
:reep rate, 

I I I 

Total 
elongation; 
percent 

Lot 

I I I I 

ature, 

I I I 

F 

Total 
reduction 
in area, 
percent 

4000 1 7,980 26 .3X10-6 
8,970 40 
10,080 84 
10,980 210 

Average 
grain 

diameter, 

cm 
L, 

Test temperature, 3000’ F 

G 43 .4X10-6 
81.3 
2 00 

I I I 

Test temperature, 3500’ F 

5,020 
5,480 
5,990 
6,540 
6,970 

4,490 
5,030 
5,490 
5,970 
6,490 
6,990 

4,720 
5,530 
6,220 
6,940 
5,030 
5,530 
6,000 
6,480 

15. 7X10-6 
19.7 
30 

52.6 
96.6 

10 .7xlo-6 
15.3 
21 -4 
30.7 
55 
110 

19.5xlO -6 
36.2 
68.8 
171 
25 
35 
60 
115 

Test temperature, 4000’ F 

The steady creep r a t e  i n  the temperature range where thermal recovery i s  
possible  may be represented by a r e l a t i o n  of the following form ( r e f .  38): 

= ksaLbe-Q/RT (11) 
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Annealed for 1 hr 

0 200 400 600 800 lam 1200 1400 1600 1800 m 2200 2400 2600 2800 
Time, t, min 

Figure 16. - Representative constant-load-creep curves for arc-melted tungsten at and 3soo0 F. 

Time, t, min 

figure 17. - Representative step-load creep curves for arc-melted tungsten at &, 3soo0, and F. 
Lot F annealed for 1 hour at 40000 F. 
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where 

6 steady creep r a t e ,  sec-1 

k constant 

s engineering stress, p s i  

a exponential s t r e s s  dependency 

L average grain diameter, cm 

b exponential grain s ize  f ac to r  

Q 

R gas constant, 1.987 cal/g-mole 

T temperature, OK 

Values for the  exponential stress dependenc: a commonly range from 4 t o  6, 
while Q a t  high temperatures i s  usually similar t o  the ac t iva t ion  energy f o r  
self-diffusion ( re fs .  36 and 38). 

act ivat ion energy f o r  creep, cal/g-mole 

A plot  of the steady creep r a t e s  against  s t r e s s ,  shown i n  f igu re  18, shows 

.- 
In n 6  

Constant 

In- 
In z 
c 
VI :m 2 

1 
10-7 

load 
data 
0 
V 

10-6 10-5 
Steady creep rate, i, sec-1 

10-4 

Figure 18. - Steady creep rate against stress for arc-melted tungsten, illustrating range of data Obtained. 

wide sca t te r  i n  the  data  f o r  each temperature. This s c a t t e r  was considerably 
reduced by introducing the g r a b - s i z e  fac tor .  A least-squares analysis  of t he  
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10 

6 
4 
10-28 10-27 10-26 10-25 

Stress - creep-rate parameter. ~ i - 5 . 8 ,  (sec-l)(psi-5-8) 

- 

&El 10-24 

Figure 19. - Effect of grain size on stress - creep-rate parameter for arc-melted 
tungsten at 3Kt1° to & F. 

data gave average values 
of 5.8 and 0.43 for a, 
the  exponential s t r e s s  
factor ,  and b y  the  ex- 
ponential grain-size fac- 
t o r  , r e  spec t ively. A s  
seen from equation (u) 
t h e  grain- s i ze  dependen- 
c i e s  at  each temperature 
can be i l l u s t r a t e d  by a 
p lo t  of L against  
&'", while t he  stress 
dependency can be i l l u s -  
t r a t e d  by p lo t t ing  S 
against  & L - ~ .  The grain- 

s ize  dependency i s  shown i n  f igure  19 ,  while the s t ructure  - creep-rate param- 
eter against  stress i s  shown i n  f igure  20. The exponential stress depen- 
dency a decreases s l i g h t l y  with increasing temperature, ranging from 6.5 a t  

10% 10-5 10-4 10-3 
Structure - creep-rate parameter, i ~ 4 - 4 3 ,  Gec-9 (cm-0.43) 

Figure 20. - Structure - creep-rate parameter against stress for arc-melted tungsten showing good fit obtained 
when creep rates are compensated for grain size. 

0 
3000° F t o  4.6 a t  4000 
f ac to r  appears as the  slopes of the  l i n e s  i n  f igure  20. 

F (wfiere only step-load-rate data  were obtained). This 

The average value of 5.8 f o r  a i n  the  current study i s  close t o  the val-  
ues of 6.3 f o r  powder metallurgy tungsten a t  4082O t o  5072' F (ref. 39) and 
5 a t  4800' F (ref. 30). 

The grain-s ize  f ac to r  b 
a recent  review (ref. 38) and observed i n  copper (ref. 40) and i n  powder- 
metallurgy tungsten (ref. 30). The increase i n  creep rate with increasing 
gra in  s i ze  i n  the present study, however, i s  i n  qua l i ta t ive  agreement with 
these and other recent observations (refs .  41  t o  43). I n  contrast ,  s tudies  on 

of 0.43 i s  less than the  value of 2 proposed i n  
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aluminum ( re f .  36 )  and other metals ( r e f s .  44 and 45) have shown the  opposite 
e f f e c t  of grain s ize ,  the coarse-grained mater ia ls  being more creep r e s i s t a n t  
than the fine-grained materials. 
t i o n s  on the e f f e c t s  of gra in  s ize  have not ye t  been s a t i s f a c t o r i l y  explained. 

The reasons f o r  these conf l ic t ing  observa- 

The temperature dependency of the  creep constant k i s  shown i n  f igure  21. 

I 
4OOO 3500 3000 

Temperature, OF 

Figure 21. -Temperature dependence of creep constant for arc-melted tungsten 
at 3oooo to 4000' F. 

t i o n  climb. The decrease i n  temperature dependency 

It i s  seen t h a t  the slope 
decreases with decreasing 
temperature, correspond- 
ing t o  a change i n  t h e  
ac t iva t ion  energy from 
about 140 k i loca lor ies  
per  gram-mole between 
3500' and 4000' F t o  
about 74 k i loca lor ies  per 
gram-mole between 3000° 
and 3500' F. I n  previous 
s tudies  on aluminum 
( r e f .  36) ,  a decrease i n  
ac t iva t ion  energy from 
35 k i loca lo r i e s  per gram- 
mole t o  28 k i loca lo r i e s  
per gram-mole with de- 
creasing temperature a t  
about 0 .5  Tm was a t t r i b u -  
t ed  t o  a change i n  mech- 
anism from dis loca t ion  
climb a t  the  higher tem- 
perature t o  cross  s l i p  a t  
the lower temperature. 
Since the  ac t iva t ion  en- 
ergy of 140 k i loca lor ies  
per gram-mole i s  f a i r l y  
c lose t o  t h a t  for s e l f -  
diffusion,  153 k i lo-  
ca lor ie  s per gram-mole 
( r e f .  2 2 ) ,  t he  creep 
mechanism at  3500° t o  
4000' F may be dis loca-  

a t  3000" t o  3500' F prob- 
ably represents a t r a n s i t i o n  i n  the r a t e  cont ro l l ing  reac tor  from dis loca t ion  
climb t o  cross  s l i p .  

The t ransient .  o r  primary creep flow was a l so  studied a t  3000' and 3500' F 
i n  order t o  character ize  more completely the high-temperature creep behavior 
of tungsten and t o  determine the  r e l a t ion  between t h e  t r ans i en t  and steady flow 
ra tes .  
according t o  the  fami l ia r  Andrade r e l a t i o n  

The i n i t i a l  portions of the constant-load creep curves were correlated 
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where 

e engineering s t r a i n  

p t r ans i en t  creep rate, sec 

t t i m e ,  sec  

Representative p l o t s  are shown i n  figure 22, and rate data  are included i n  
table X. 

-1/3 

Time, t,  minu3 

Figure 22 -Cubic plot of transient creep of arc-melted tungsten at and 3500' F. Lot E; 
annealed for 1 hour at 4106' F. 

I n  f igu re  23, t h e  t rans ien t  creep rates are compared with t h e  steady 
It i s  seen t h a t ,  f o r  annealed materials, t h e  rates a t  both 3000° creep rates. 

and 3500' F may be correlated by a parabolic r e l a t i o n  

This type of r e l a t ion  has previously been observed i n  copper (ref. 40) and 
columbip (ref. 46), while da ta  f o r  lead (ref. 41) showed similar r a t i o s  be- 
tween e and p but tended t o  exhib i t  a cubic r a the r  than a parabolic rela- 
t ion.  
0.3 observed i n  t h e  present study. 

For columbium t h e  proport ional i ty  constant w a s  about 0.1, compared with 

Cubic creep w a s  not observed f o r  specimens t h a t  were i n i t i a l l y  i n  the  
swaged condition. Apparently, t h e  swaged materials were undergoing s t r u c t u r a l  
changes ( r ec rys t a l l i za t ion  and/or grain growth), which s ign i f i can t ly  a f fec ted  
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Steady creep rate, i, sec-l 

Figure 23. - Relation between transient and steady creep rates for annealed arc- 
melted tungsten at 3000° and 3500° F. 

t h e  t rans ien t  creep 

The r e l a t ion  b 

behavior. 

tween steady creep r a t e  and rupture l i f e  i s  shown i n  f 
ure  24. This r e l a t ion  may be expressed as 

z 
i 
c 

.- E- 
c 

L 
0) 

CT 
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7 -7 ___r 

Test 
temperature, 

OF 

3500 

4800 

1 r- 

Tungsten 
n 

Arc melted 

Powder metallurgy 

Powder metallurgy 
(ref. 50) 

(ref. 30) 

10-8 10-7 10-6 10-5 
Steady creep rate, 6 ,  sec-l 

10-4 10-3 

Figure 24. - Relation between steady creep rate and rupture time for arc-melted and powder-metallurgy 
iungsten. 
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where m = 1.0 f o r  the present data  and c = 0.2. Data f o r  arc-melted molyb- 
denum (ref. 47) a l s o  show a l i n e a r  re la t ion  ( m  = 1.0) with 
copper ( re f .  40),  m = 1 a lso ,  but  c i s  smaller, 0.06. By comparison, i n  
reference 48, it was found t h a t  
mater ia ls  including aluminum, titanium, s tee ls ,  and superalloys. Values f o r  m 
of less than uni ty  probably indicate t h a t  extraneous react ions (aging, s t ra in-  
induced p rec ip i t a t ion  hardening, etc.  ) a r e  a f fec t ing  t h e  creep behavior. 

c = 0.35, while for  

m ranges from 0.77 t o  0.93 f o r  a var ie ty  of 

It i s  of p r a c t i c a l  i n t e r e s t  t o  compare the  data  on rupture l i f e  against  
steady creep rate $or arc-melted tungsten with the l imited data avai lable  on 
powder-metallurgy tungsten. This comparison affords an indicat ion of t h e  
creep d u c t i l i t y  of various materials. I n  f igure 24, rupture l i f e  and steady 
creep r a t e s  f o r  both arc-melted and powder-metallurgy tungsten (refs. 30 and 
49) are plotted.  
powder-metallurgy tungstep i s  about one-half t h a t  of arc-melted tungsten. The 
difference i n  behavior between powder-metallurgy and arc-melted tungsten i s  
fur ther  shown by rupture data a t  2700° and 3000' F ( f ig .  25) .  

It i s  seen t h a t  f o r  a given creep rate .  the  rupture l i f e  of 

Arc-melted f ine-  

101 102 
Rupture time, t,, min 

104 

Figure 25. - Rupture time against stress for arc-melted and powder-metallurgy tungsten at 27OOOand F. 

grained tungsten, which would be expected t o  exhibi t  a creep rate similar t o  
t h a t  of powder-metallurgy tungsten (because of expected similar grain s i z e s )  
had by far the  longer rupture l i f e .  
i t e d  about t h e  same l i f e  as powder-metallurgy tungsten. This difference i s  
thought t o  r e s u l t  from the presence of f i n e  p a r t i c l e s  i n  the  powder-metallurgy 
tungsten t h a t  severely r e s t r i c t  grain-boundary mobility during deformation and 
thus reduce the  duc t i l i t y .  

Large-grained arc-melted tungsten exhib- 

From the l imited data  available,  it appears tha t ,  f o r  similar temperature 
and stress levels, unalloyed powder-metallurgy tungsten may exhibi t  lower creep 
rates than unalloyed arc-melted tungsten because of t he  r e l a t ive ly  s tab le  f i n e  
grain s i z e  of the  former. This advantage i s  somewhat o f f s e t  by the  longer rup- 
ture l i f e  of arc-melted materials f o r  a given creep ra te .  Arc-melted tungsten 
a l loys  can be expected t o  compare even more favorably with similar powder- 
metallurgy tungsten alloys,  since they w i l l  also possess f ine r ,  more s table  
gra in  s izes  than unalloyed arc-melted tungsten. 

The i n t e r n a l  and external  s t ruc tu ra l  features  of specimens deformed at  
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various f l o w  ra tes  (both creep and t ens ion )  were s tudied i n  order  t o  g a i n  fur- 
t h e r  i n s igh t  i n t o  t h e  mechanisms of flow and fracture. Figures  26 t o  31 show 

l a 1  Surface vies showing s l i p  l ines ant1 grain-boundry s l id ing.  X15. ( b )  I n te rna l  view showing polyganization and microvoids (stress axis 

Figure 26. - Coarse-gi-ained tensi le specimen. Lot C; ailnealed for 4 h o u r s  at 4200" F; tested at 350G" F; s t ra in  rate, 8.4X10-4 sec- l .  (Reduced 20 
hor izontal  1. X100. 

percent ii1 pr int ing.)  

, 

( a )  Surface view showing slip l ines and grain-boundary separation. ( b )  I n te rna l  view showing polyganization and  smal l  grain-boundary 

Figure 27. - Coarse-grained creep specimen. Lot A; annealed fo r  4 h o u r s  at 4200" F; tested under  h i g h  stress (5040 psi) at 3506" F; steady creep 

X15. 

rate, 2.03X10-5 sec- l .  (Reduced 2ci percent in p r in t i ng . )  

voids (stress axis hor izontal  ). X100. 

r ep resen ta t ive  e x t e r n a l  macrostructures and i n t e r n a l  microstructures  of both 
coarse- and f ine-grained specimens deformed t o  f r a c t u r e  a t  flow r a t e s  of 
8. 4f10-4 second-' (0.05 min-l t e n s i l e  t e s t )  t o  6 . 3 ~ 1 0 - ~  second-' (slow c reep ) .  

S ign i f i can t  observations from t h i s  s e r i e s  of specimens may be summarized 
as follows: 

(1) A t  high f low rates  ( f i g s .  26 and 29), t h e  surfaces  e x h i b i t  numerous 
coarse s l i p  markings and considerable g r a i n  deformation. Recent s tud ie s  of 
s l i p  i n  tungsten a t  ambient ( r e f .  50) and elevated temperatures ( ref .  51) 



'- . 

( a )  Surface view showing grain-boundary separation. X15. lb l  I n te rna l  view showing trahsverse grain-boundary voids and 
polyganization (s t ress axis hor izontal  !. X100. 

Figure 28. - Coarse-grained creep specimen. Lot A;  annealed for 4 h o u r s  at 420;' F; testeti under  low stress (19K to 2470 psi! at 35Gij' F; steady 

creep rate, 1.31 t o  7.42X10-7 sec'l. (Reduced 20 percent in pr int ing.)  

( a )  Surface v i w  showing sl ip l ines.  X15 

. IC-  . . : : *  

( b l  Internal  v i m  showing polyganization and longi tudinal  t es r i ng  
(stress axis hor izonta!  t .  X100. 

Figure 29. - Fine-grained tensi le specimen. Lot E; annealed fo r  1 h o u r  at 36133' F; testeo at 35W F: s t ra in  rate 8.4X10'4 8ec-l 
(Retiuceci 20 percent in p r in t i ng . )  

suggest t h a t  these markings represent  normal o r  c r o s s - s l i p  t r a c e s  of ( 1 1 2 )  
planes s l i pp ing  i n  t h e  (111) di rec t ion .  
( f i g s .  28 and 31) appears t o  have been accommodated pr imari ly  by boundary 
s l i d i n g  and separation. 

Deformation a t  13w flow r a t e s  

( 2 )  Micrographs show t h a t  high flow r a t e s  ( f i g s .  26 and 29) promgte polyg- 
o n i z a t i m  and se r r a t ed  g ra in  boundaries ( ind ica t ive  of deformation by c sa r se  
s l i p ) ,  while low flow rates ( f i g s .  28 and 31) p r m o t e  l e s s  Solyganization and 
only s l i g h t l y  deformed g r a i n  boundaries. 

(3)  A t  a l l  s t r a i n  ra tes ,  voids were f o w d  a t  t h e  g r a i n  boundaries and 
appeared t o  have formed i n i t i a l l y  a t  t r i p l e  bmndary jw-ctions.  A t  high flow 
r a t e s  ( f ig .  29), voids were elongated p a r a l l e l  t o  t h e  t ens ion  axis; a t  i n t e r -  
mediate flow r a t e s  ( f i g .  3 0 ) ,  voids were  i r regular ;  a t  low f low r a t e s ,  voids 
were  l a r g e r  and were o r i en ted  t r ansve r se  t o  the  t ens ion  axis. 
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( a )  Surface view showing gt-din-boundary s l i6 ing.  X15. ( b )  I n te rna l  view showing grain-boundary tea r ing (s t ress  axis 
ho r i zon ta l ) .  X100. 

Figure 30. - Fine-grained creep specimen. Lot E; as swaged; tested under  h i g h  stress (5130 psi) at 3500" F; steady creep rate, 6.14X10'6 sec - l  
(Reduced 20 percent in pr int ing.)  

( a )  Surface view showing grain-boundary lear ing.  X15. (b )  I n te rna l  view showing grain-boundary voids t ransverse to stress 
direct ion (stress axis ho r i zon ta l ) .  Xlbb. 

Figure 31. - Fine-grained creep specimen, Lot E; as swaged; tested under  low stress (2986 psi) at 3500" F; steady creep rate, 6.37X10-7 sec- l .  
(Reduced 20 percent in p r in t i ng . )  

(4 )  Void dens i ty  was mu@ higher i n  the  f ine-grained mater ia l s  than i n  the  
coarse-grained materials.  

These observations axe cons is ten t  with recent  views on the  processes of 
high-temperature deformation and f r a c t u r e  as summarized i n  references 37  
and 52.  According t o  these  views, jogs  a t  t he  g r a i n  boundary, produced by in-  
t ragranular  s l i p ,  and t r i p l e  po in ts  serve as b a r r i e r s  t o  grain-boundary s l id ing  
during high-temperature deformation a t  moderately high flow ra t e s .  
proceeds, t he  s t r e s s  concentration a t  these b a r r i e r s  increases  u n t i l  re l ieved  
by boundary s l id ing ,  gra in  deformation, or tear ing.  I n  t h e  l a t t e r  case,  voids 
a r e  formed, which normally exhib i t  l i t t l e  growth and become mechanically elon- 
gated p a r a l l e l  t o  the  t e n s i l e  axis as deformation proceeds. A t  low flow r a t e s ,  
thermal recovery el iminates  s l i p  t races ,  which produce grain-boundary jogs, but  
t r i p l e  points  remain as b a r r i e r s  t o  g r a i n  s l id ing .  Voids formed a t  these  
t r i p l e  points  grow by vacancy condensation, which becomes important as t h e  time 
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avai lable  f o r  diffusion of vacancies increases. Surface tension e f f ec t s  cause 
the  growing voids t o  elongate transverse t o  the  tension axis,  a s  i l l u s t r a t e d  i n  
f igures  28(b) and 31(b). 

Grain-size e f f e c t s  on void formation are pa r t i cu la r ly  evident i n  the pres- 
en t  work. The increase i n  void density with decreasing grain s ize  i s  at tr ib- 
uted t o  increased complexity of intragranular s l i p  caused by the  shorter avai l -  
able  s l i p  distance,  which produces a l a rge r  number of grain-boundary jogs, and 
t o  the  l a rge r  number of t r i p l e  points. 

CONCLUSIONS 

A study of the  e f f e c t s  of pur i ty  and s t ructure  on recrys ta l l iza t ion ,  grain 
growth, low temperature duc t i l i t y ,  t ens i le ,  and creep properties of arc-melted 
tungsten yielded t h e  following conclusions: 

1. The rec rys t a l l i za t ion  behavior of arc-melted tungsten f o l l o w s  the  usual 
pat tern,  increasing p r io r  s t r a ins  and longer annealing t i m e s  decreasing t h e  
temperatures f o r  fu l l  recrys ta l l iza t ion .  The strain-induced boundary migration 
r a t e s ,  calculated from recrys ta l l iza t ion  data, varied among the  f i v e  lots 
studied, bu t  appeared t o  decrease with increasing detectable metal l ic  impurity 
content. The observed ac t iva t ion  energy approximates t h a t  expected f o r  grain- 
boundary self-diffusion. 

2. The grain growth behavior a l so  appeared t o  be re la ted  t o  impurity con- 
tent .  
l i c  impurities. 

The growth rates tended t o  decrease with increasing detectable m e t a l -  

3. Arc-melted tungsten exhibits duc t i l e -b r i t t l e  t r ans i t i on  temperatures 
i n  tension and i n  bending which are s imi la r  t o  those reported f o r  powder- 
metallurgy tungsten. The t e n s i l e  t r ans i t i on  temperatures f o r  s t r e s s - r e l i e f -  
annealed mater ia ls  showed the usual tendency t o  decrease with increasing p r io r  
work. 

4. The y ie ld  and ultimate t e n s i l e  strengths and the  parabolic s t ra in-  
hardening coef f ic ien ts  of arc-melted tungsten at 2500' t o  4140° F decrease sig- 
n i f i can t ly  with increasing grain size. For example, the  ultimate strength, 
which i s  proportional t o  the  -0.12 power of grain s ize ,  i s  increased by 40 per- 
cent on decreasing the  grain s ize  from 0 . 1 t o  0.005 centimeter. 
of arc-melted tungsten i s  similar t o  t ha t  reported f o r  powder-metallurgy tung- 
s ten when compared a t  similar grain s izes ,  although the  fo rmer  exhibits b e t t e r  
high-temperature duc t i l i ty .  

The strength 

5. The creep behavior of arc-melted tungsten at  3000' t o  4000' F was  a l so  
s igni f icant ly  affected by gra in  size,  the finer-grained material  being more 
creep res i s tan t .  The i n i t i a l  t rans ien t  f l o w  behavior followed the  expected 
cubic re la t ion.  The cubic rates f o r  annealed materials a re  re la ted  t o  the  sub- 
sequent l i n e a r  flow rates .  The temperature dependency f o r  l i nea r  creep corre- 
sponds t o  an ac t iva t ion  energy of approximately 140 k i loca lor ies  per gram-mole 
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between 35000 and 4000' F but  apparently decreases between 3000' and 3500' F. 

Lewis  Research Center 
Rational Aeronautics and Space Administration 

Cleveland, Ohio, Ju ly  23, 1964 
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APPENDIX - SPECTROGRAPHIC ANALYSES OF ARC-MELTED TUNGSTEN 

Element 

Conventional chemical and emission spectrographic analyses on four  start- 
ing electrodes and on fabricated rods from l o t s  A t o  E are given i n  t a b l e  XTI. 

Impurity, PPma 

S t a r t i n g  electrodes Fabricated rods 

TABLE XII. - CHEMICAL AND EMISSION SPECTROGRAPHIC ANALYSES 

Oxygen 
Nitrogen 
Carbon 
Hydrogen 
Aluminum 
Calcium 
Chromium 
Copper 
I ron  
Magnesium 
Manganese 
Molybdenum 
Nickel 
Pot ass ium 
S i l i c o n  

Sulfur 
Tin 

Total 
detec tab le  
meta l l ics  

Sodium 

Lot 

B , D , E ~  c 

6f5 11 
<6 15 
10 8 

10 10 
lo -- 
10 0 
10 u 
IO 10 
lo -- 
10 u 
10 a0 
10 8 
-- u o  
10 10 

-- 18 
10 <5 

<6 a 

-- a o  

110 56 

B C  

3 
a o  

20 
-- 

15 

a o  

i o  
5 

3 0  

56 

- 
A - 
3 
13 
6 

U 
2 
a0 
<5 
2 
5 -- 
a 
15 
2 

u o  
10 

u o  
u o  
<5 - 

36 - 

2 6  
9 8  
4 9  
u a  

10 

< 5 < 5  
1 1  

20 

a o  

-- 
a u  

a o  
a o  

15 
2 2  

10 

u o  
< 5 < 5  

58 

- 
D - 
5 
9 
6 

10 
2 0  
<5 
1 
20 

a 

-- 
a 
15 
2 
10 
10 
20 
10 
<5 - 

8E - 

OGgen and hydrogen - vacuum fusion 
Carbon - combustion 
Nitrogen - Kjeldahl 
Sulfur - combustion 
Meta l l ics  - emission spectrography 

bAndysis  from suppl ier .  

l o t s  A t o  E a re  presented i n  t ab le  XIIII .  

- 
E - 
3 
12 
5 

20 
a 0  

7 
5 
60 

a 

-- 
a 
15 
10 

CLO 
15 
10 
:lo 
<5 - 

142 - 

A comparison between the  start- 
ing electrode and the  fabrica-  
ted  rod analyses f o r  l o t s  B, 
D, and E does not appear war- 
ranted since the analyses were 
conducted a t  different  labora- 
to r ies .  The analyses f o r  l o t  C 
s t a r t i ng  electrode and fabrica- 
ted  rod, however, were con- 
ducted at  t h e  same laborato- 
r i e s .  Compasison of these two  
analyses reveals only minor 
detectable changes i n  compo- 
s i t i o n  as a r e s u l t  of melting 
and fabrication. Oxygen, ni-  
trogen, nickel, and sulfur are 
seen t o  be lower i n  the  f ab r i -  
cated rod, while carbon, cop- 
per, iron, and molybdenum a re  
higher. The s m a l l  increases i n  
carbon and copper l eve l s  could 
r e s u l t  f rom contamination by 
the  carbonaceous diffusion pmp 
o i l  and the  copper crucible 
during melting, but t he  in-  
creases i n  i ron  and molybdenum 
are  unexplainable, if r e d .  It 
may be f a i r l y  concluded t h a t  
melting and fabr ica t ion  produce 
only minor detectable composi- 
t i o n a l  changes i n  tungsten i f  
high-purity electrode mater ia l  
i s  used. 

Mass spectrographic analy- 

These analyses w e r e  obtained on a re- 
ses  on fabricated rods from 

cent ly  developed double-f ocusing uni t  capable of high resolution. The impurity 
l eve l s  observed by mass spectrography are generally lower  than those observed 
by emission spectrography f o r  the  same elements. 

For several  elements, the  two spectrographic techniques give d i f f e ren t  re -  
sults. 
s i l i con  content of the  f i v e  l o t s  studied, while mass spectrography showed the  
same l o t  t o  have the  highest s i l i con  content. The two  methods are  i n  agree- 
ment, however, as t o  the  r e l a t ive  p u r i t i e s  of the  f i v e  l o t s .  Both methods in- 
d ica te  t h a t  t h e  t o t a l  impurity l e v e l  increases i n  the  order A, B, C, D, E. 

For example, emission spectrography indicated l o t  B t o  have the  lowest 
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<.04 

<.01 
5.0 
1.0 

-03 
.2 

3.0 
<.01 
<.05 
<.01 
4.0 

.3 

.2 
1.0 
5.0 
<.05 
-25 
<.01 
<.05 

.03 

.008 

21.0 

TABLF MII. - MASS SPECTROGRAPHIC ANALYSIS 

OF FABRICATED TUNGSTEN RODS 

<.03 
.05 
<.01 
1.0 
.1 
.3 
.4 

2.5 
<.01 
<.05 
-05 
6.0 
.4 
.02! 

<1.0 
11.0 
<.05 

.3 
<.01 
.1 

<.01 

24.0 

Element 

Aluminum 
Antimony 
Arsenic 
Boron 
Calcium 
Chromium 
Cobalt 
Copper 
Iron 
Lithium 
Magnesium 
Manganese 
Molybdenum 
Nickel 
Phosphorus 
Potassium 
Silicon 
Sodium 
Sulfur 
Tin 
Vanadium 
Zinc 

Total detectable metallic: 

Lot 

I I I I 

Impurity, 

6 .O 
<.01 
.01 

<.01 
4 .O 
.1 
;01 
.45 

3 .O 
<.01 
< -05 
<.01 
5 .O 

.3 

.2 
1 .o 
5 .O 
<.05 

.2 
<.01 
<.05 

.04 

25.0 

0.1 
.05 
-05 
4.0 
1 .o 
.1 
.2 
.4 

13 .O 
.05 
.1 
-05 
9.5 

.2 

.E 
:1 .o 
4 .O 
11 .o 
1 .o 
<.01 
.2 
.01 

L5 .O 

-0 .o 
.3 
.OO& 
<.01 
5 .O 
.1 
.02: 
.2 

L5 .o 
<.01 
.1 

<.01 
6 .O 
1.1 
.2 

2 .o 
9.0 
<.05 
.2 
.01 

< .05 
.03 

1.9.0 
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